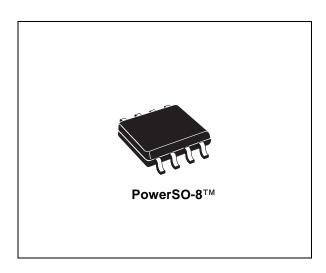


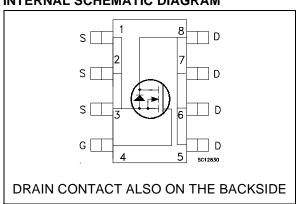
STSJ25NF3LL

N-CHANNEL 30V - 0.0085 Ω - 25A PowerSO-8™ LOW GATE CHARGE STripFET™ II POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STSJ25NF3LL	30 V	<0.0105 Ω	25 A


- TYPICAL R_{DS}(on) = 0.0085 Ω @ 10V
- TYPICAL Q_q = 24 nC @ 4.5 V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE

DESCRIPTION


This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. This silicon, housed in thermally improved SO-8TM package, exhibits optimal on-resistance versus gate charge tradeoff plus lower $R_{thi-c.}$

■ SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PCS

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate- source Voltage	± 16	V
Ι _D	Drain Current (continuous) at T _C = 25°C (*)	ntinuous) at T _C = 25°C (*) 25	
Ι _D	Drain Current (continuous) at T _C = 25°C (#)	12	A
ΙD	Drain Current (continuous) at T _C = 100°C	16	A
I _{DM} (•)	Drain Current (pulsed)	100	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$ Total Dissipation at $T_C = 25^{\circ}C$ (#)	70 3	W

^(•) Pulse width limited by safe operating area.

^(*) Value limited by wires bonding

THERMAL DATA

Tj	Thermal Resistance Junction-case (*)Thermal Resistance Junction-ambient Maximum Operating Junction Temperature Storage Temperature	Max Max	1.8 42 150 -55 to 150	°C/W °C/W °C °C
T _{stg}	Storage Temperature		-55 to 150	

^(*) When mounted on FR-4 board with 0.5 in² pad of Cu.

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_{C} = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 12.5 A I _D = 12.5 A		0.0085 0.011	0.0105 0.013	Ω Ω

DYNAMIC

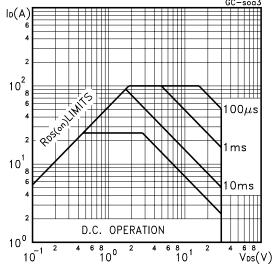
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS}=15 \text{ V}$ $I_{D}=12.5 \text{ A}$		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		1650 540 130		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

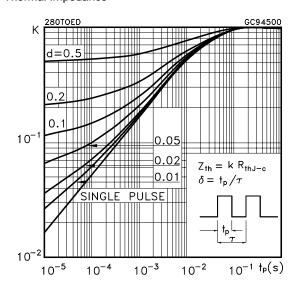
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{aligned} &V_{DD} = 15 \text{ V} & I_D = 12.5 \text{ A} \\ &R_G = 4.7 \Omega & V_{GS} = 4.5 \text{ V} \\ &(\text{Resistive Load, Figure 1}) \end{aligned}$		23 156		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =15V I _D =25A V _{GS} =4.5V (see test circuit, Figure 2)		24 8.5 12	33	nC nC nC

SWITCHING OFF

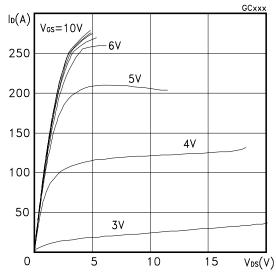

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$\begin{aligned} &V_{DD} = 15 \text{ V} & I_D = 12.5 \text{ A} \\ &R_G = 4.7\Omega, &V_{GS} = 4.5 \text{ V} \\ &(\text{Resistive Load, Figure 3}) \end{aligned}$		27 28		ns ns

SOURCE DRAIN DIODE

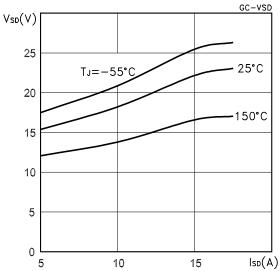

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				25 100	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 25 A V _{GS} = 0			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} = 25 \text{ A} & \text{di/dt} = 100 \text{A/}\mu\text{s} \\ V_{DD} = 25 \text{ V} & T_j = 150 ^{\circ}\text{C} \\ \text{(see test circuit, Figure 3)} \end{split}$		40 50 2.5		ns nC A

^(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.

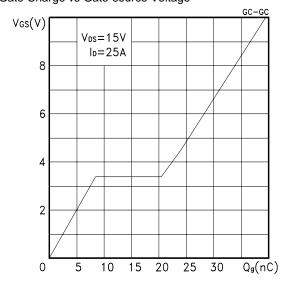
Safe Operating Area

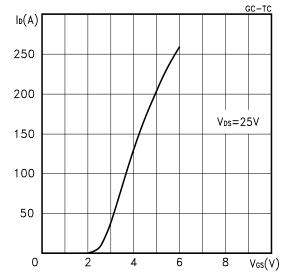


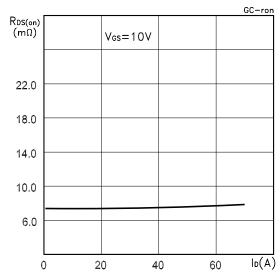
Thermal Impedance

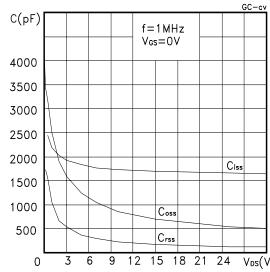


^(•)Pulse width limited by safe operating area.

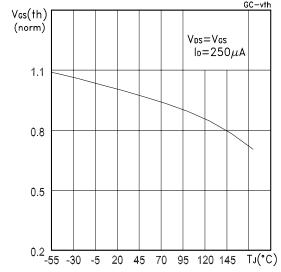

Output Characteristics


Transconductance

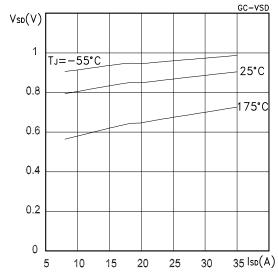

Gate Charge vs Gate-source Voltage


Transfer Characteristics

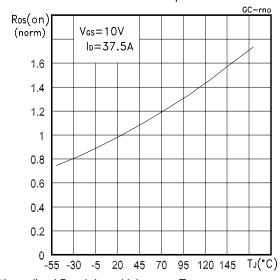
Static Drain-source On Resistance



Capacitance Variations



47/


Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature.

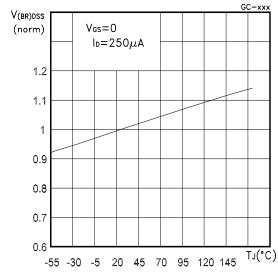


Fig. 1: Switching Times Test Circuits For Resistive Load

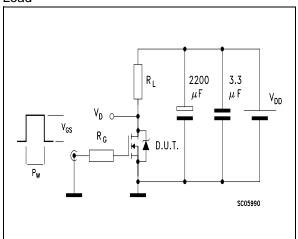


Fig. 2: Gate Charge test Circuit

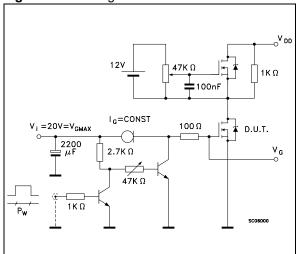
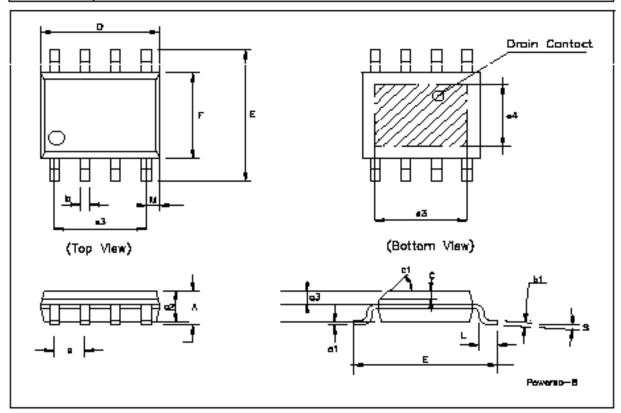



Fig. 3: Test Circuit For Diode Recovery Behaviour

PowerSO-8™ MECHANICAL DATA

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45°	(typ.)		
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
e4		2.79			0.110	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
s			8° (r	nax.)		•

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

® 2003 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com